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A. Zaikin 2.1 Conditional probability 1

Conditional probablity

Given events E and F , often we are interested in statements like

if even E has occurred, then the probability of F is ...

Some examples:

• Roll two dice: what is the probability that the sum of faces is 6 given that the first face is 4?

• Gene expressions: What is the probability that gene A is switched off (e.g.
down-regulated) given that gene B is also switched off?
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A. Zaikin 2.2 Conditional probability 2

This conditional probability can be derived following a similar construction:

• Repeat the experimentN times.

• Count the number of times event E occurs, N(E), and the number of times both E and
F occur jointly, N(E ∩ F ). Hence N(E) ≤ N

• The proportion of times that F occurs in this reduced space is

N(E ∩ F )

N(E)

since E occurs at each one of them.

• Now note that the ratio above can be re-written as the ratio between two (unconditional)
probabilities

N(E ∩ F )

N(E)
=

N(E ∩ F )/N

N(E)/N

• Then the probability of F , given that E has occurred should be defined as

P (E ∩ F )

P (E)
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A. Zaikin 2.3 Conditional probability: definition

The definition of Conditional Probability

The conditional probability of an event F , given that an eventE has occurred, is defined as

P (F |E) =
P (E ∩ F )

P (E)

and is defined only if P (E) > 0.

Note that, if E has occurred, then

• F |E is a point in the set P (E ∩ F )

• E is the new sample space

it can be proved that the function P (·|·) defyning a conditional probability also satisfies the
three probability axioms.
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A. Zaikin 2.4 Example

Example. Roll a die

Let A = {score an even number} and B = {score a number ≥ 3}.

P (A) =
1

2
, P (B) =

2

3
, P (A ∩ B) =

1

3
because the intersection has only two elements, then

P (A/B) = P (A∩B)
P (B) = 1/3

2/3 = 1
2

P (B/A) = P (B∩A)
P (A) = 1/3

1/2 = 2
3

P (A/B) #= P (B/A)
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A. Zaikin 2.5 Behaviour

Conditional probabilities behave like ordinary probabilities

Standard results for probability extend to the conditional probability, such that conditional
probabilities behave like ordinary probabilities.

For example, for events A and B

P (Ā|B) = 1 − P (A|B)

In order to prove this, first decomposeB as

B = (A ∩ B) ∪ (Ā ∩ B) −→ P (B) = P (A ∩ B) + P (Ā ∩ B)

because they are mutually exclusive. Then

P (Ā ∩ B) = P (B) − P (A ∩ B)

divide both sides by P (B)

P (Ā|B) = 1 −
P (A ∩ B)

P (B)
= 1 − P (A|B)
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2.6	  	  	  Joint	  probability
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2.7	  
The	  chain	  rule
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2.8	  	  	  Con8ngency	  
table
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2.9	  	  	  Con8ngency	  
table	  2
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2.10	  	  	  Independence
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A. Zaikin 2.11 Example: checking the independence

Example: Roll a die

Let A = {one, two, three} and B = {two, four}. Are A and B independent?
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A. Zaikin 2.11 Example: checking the independence

Example: Roll a die

Let A = {one, two, three} and B = {two, four}. Are A and B independent?

P (A) =
1

2
, P (B) =

1

3
, P (A ∩ B) =

1

6
then

P (A|B) =
P (A ∩ B)

P (B)
=

1/6

1/3
=

1

2
= P (A)

P (B|A) =
P ∩ A

P (A)
=

1/6

1/2
=

1

3
= P (B)

Thus we conclude that A and B are independent.
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2.15	  	  	  Two	  leAer	  
sequence
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A. Zaikin 2.16 Two letter sequence

Assuming equal probabilities, i.e. 1/4, we have

P (BB|one B at least) = P (BB|GB∪BG∪BB) =
P (BB ∩ (GB ∪ BG ∪ ∪BB))

P (GB ∪ BG ∪ BB)

=
P (BB)

P (GB ∪ BG ∪ BB)
=

1/4

3/4
=

1

3

A little variation of this question requires to condition on the fact that the second letter is a B

(now order matters):

P (BB|second letter is B) = P (BB|GB ∪ BB) =
P (BB ∩ (GB ∪ BB))

P (GB ∪ BB)
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2.18	  	  	  DNA	  
sequence
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2.19	  	  	  More	  on	  DNA	  example
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2.20	  	  	  Building	  a	  working	  system
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2.23	  	  	  Building	  a	  working	  system
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2.24	  	  	  More	  than	  two	  events
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2.25	  	  Mutual	  independence
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2.26	  	  	  Law	  of	  the	  total	  probability
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2.27	  	  	  Probability	  table
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2.28	  	  	  
General	  
case:	  the	  
law	  of	  total	  
probability

Monday, 18 November 13



2.29	  	  	  High-‐throughput	  genotyping	  machine
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2.30	  	  	  High-‐througput	  
genotyping	  machine
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2.31	  	  	  Bayes’	  Rule
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2.32	  	  	  Bayes	  theorem
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2.33	  	  	  Bayes	  
theorem
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A. Zaikin 2.29 Arrays example contd.

Suppose an errneous array is found among the arrays processed by the company.

What is the probability that it was processed by each one of the three machines?

We seek P (X |D), P (Y |D) and P (Z|D).

Earlier we found P (D) = 0.037
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A. Zaikin 2.29 Arrays example contd.

Suppose an errneous array is found among the arrays processed by the company.

What is the probability that it was processed by each one of the three machines?

We seek P (X |D), P (Y |D) and P (Z|D).

Earlier we found P (D) = 0.037

We can compute the required probabilities by applying the Bayes rule:

P (X |D) =
P (D|X)P (X)

P (D)
=

0.03(0.5)

0.037
= 0.4054

P (Y |D) =
P (D|Y )P (Y )

P (D)
=

0.04(0.3)

0.037
= 0.3243

P (Z|D) =
P (D|Z)P (Z)

P (D)
=

0.05(0.2)

0.037
= 0.2703

Note that P (X |D) + P (Y |D) + P (Z|D) = 1
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2.35	  	  	  Diagnos8c	  test
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2.35	  	  	  Diagnos8c	  test
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RANDOM	  VARIABLES	  AND	  THEIR	  DISTIBUTIONS
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2.40	  Discrete	  and	  con8nuous	  random	  variables
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2.41	  Discrete	  and	  con8nuous	  random	  variables
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2.42	  Probability	  
distribu8ons
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2.44	  Discrete	  probability	  distribu8ons
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2.45	  Example.	  Three	  coins
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2.46	  Cumula8ve	  distribu8on	  func8on
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2.47	  Example	  with	  three	  coins
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2.48	  Rela8onship	  
between	  probability	  
mass	  and	  distribu8on	  
func8ons

Monday, 18 November 13



2.49	  Answering	  
other	  probability	  
ques8ons	  using	  the	  
distribu8on	  func8on

Monday, 18 November 13



2.50	  Visualiza8on
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2.51	  Summary	  of	  proper8es
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2.53	  How	  to	  
specify	  a	  
probability	  
distribu8on?
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2.54	  Example.
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2.55	  More	  examples
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2.56	  Previous	  
example	  contnd.
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2.57	  Con8nuous	  probability	  distribu8ons
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2.58	  Probability	  density	  func8on
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2.59	  Important	  remark
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2.60	  Example
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2.61	  Previous	  
example	  con8nued
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2.62	  More	  examples
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2.63	  Some	  summary
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