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A. Zaikin 2.1 Conditional probability 1

Conditional probablity

Given events E and F , often we are interested in statements like

if even E has occurred, then the probability of F is ...

Some examples:

• Roll two dice: what is the probability that the sum of faces is 6 given that the first face is 4?

• Gene expressions: What is the probability that gene A is switched off (e.g.
down-regulated) given that gene B is also switched off?
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A. Zaikin 2.2 Conditional probability 2

This conditional probability can be derived following a similar construction:

• Repeat the experimentN times.

• Count the number of times event E occurs, N(E), and the number of times both E and
F occur jointly, N(E ∩ F ). Hence N(E) ≤ N

• The proportion of times that F occurs in this reduced space is

N(E ∩ F )

N(E)

since E occurs at each one of them.

• Now note that the ratio above can be re-written as the ratio between two (unconditional)
probabilities

N(E ∩ F )

N(E)
=

N(E ∩ F )/N

N(E)/N

• Then the probability of F , given that E has occurred should be defined as

P (E ∩ F )

P (E)
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A. Zaikin 2.3 Conditional probability: definition

The definition of Conditional Probability

The conditional probability of an event F , given that an eventE has occurred, is defined as

P (F |E) =
P (E ∩ F )

P (E)

and is defined only if P (E) > 0.

Note that, if E has occurred, then

• F |E is a point in the set P (E ∩ F )

• E is the new sample space

it can be proved that the function P (·|·) defyning a conditional probability also satisfies the
three probability axioms.
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A. Zaikin 2.4 Example

Example. Roll a die

Let A = {score an even number} and B = {score a number ≥ 3}.

P (A) =
1

2
, P (B) =

2

3
, P (A ∩ B) =

1

3
because the intersection has only two elements, then

P (A/B) = P (A∩B)
P (B) = 1/3

2/3 = 1
2

P (B/A) = P (B∩A)
P (A) = 1/3

1/2 = 2
3

P (A/B) #= P (B/A)
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A. Zaikin 2.5 Behaviour

Conditional probabilities behave like ordinary probabilities

Standard results for probability extend to the conditional probability, such that conditional
probabilities behave like ordinary probabilities.

For example, for events A and B

P (Ā|B) = 1 − P (A|B)

In order to prove this, first decomposeB as

B = (A ∩ B) ∪ (Ā ∩ B) −→ P (B) = P (A ∩ B) + P (Ā ∩ B)

because they are mutually exclusive. Then

P (Ā ∩ B) = P (B) − P (A ∩ B)

divide both sides by P (B)

P (Ā|B) = 1 −
P (A ∩ B)

P (B)
= 1 − P (A|B)
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A. Zaikin 2.11 Example: checking the independence

Example: Roll a die

Let A = {one, two, three} and B = {two, four}. Are A and B independent?
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A. Zaikin 2.11 Example: checking the independence

Example: Roll a die

Let A = {one, two, three} and B = {two, four}. Are A and B independent?

P (A) =
1

2
, P (B) =

1

3
, P (A ∩ B) =

1

6
then

P (A|B) =
P (A ∩ B)

P (B)
=

1/6

1/3
=

1

2
= P (A)

P (B|A) =
P ∩ A

P (A)
=

1/6

1/2
=

1

3
= P (B)

Thus we conclude that A and B are independent.
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A. Zaikin 2.16 Two letter sequence

Assuming equal probabilities, i.e. 1/4, we have

P (BB|one B at least) = P (BB|GB∪BG∪BB) =
P (BB ∩ (GB ∪ BG ∪ ∪BB))

P (GB ∪ BG ∪ BB)

=
P (BB)

P (GB ∪ BG ∪ BB)
=

1/4

3/4
=

1

3

A little variation of this question requires to condition on the fact that the second letter is a B

(now order matters):

P (BB|second letter is B) = P (BB|GB ∪ BB) =
P (BB ∩ (GB ∪ BB))

P (GB ∪ BB)
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A. Zaikin 2.29 Arrays example contd.

Suppose an errneous array is found among the arrays processed by the company.

What is the probability that it was processed by each one of the three machines?

We seek P (X |D), P (Y |D) and P (Z|D).

Earlier we found P (D) = 0.037
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A. Zaikin 2.29 Arrays example contd.

Suppose an errneous array is found among the arrays processed by the company.

What is the probability that it was processed by each one of the three machines?

We seek P (X |D), P (Y |D) and P (Z|D).

Earlier we found P (D) = 0.037

We can compute the required probabilities by applying the Bayes rule:

P (X |D) =
P (D|X)P (X)

P (D)
=

0.03(0.5)

0.037
= 0.4054

P (Y |D) =
P (D|Y )P (Y )

P (D)
=

0.04(0.3)

0.037
= 0.3243

P (Z|D) =
P (D|Z)P (Z)

P (D)
=

0.05(0.2)

0.037
= 0.2703

Note that P (X |D) + P (Y |D) + P (Z|D) = 1
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