Expectations, moments

and transformations
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3.1 Expected values

It is often convenient to consider a set of simple numbers that describe some dominant

features of the random variable.

One such number is the expected value or mean, a measure of location. It gives the center

of mass of a probability distribution.

e For discrete variables, the expected value is defined as

E(X) = Z rplx)

reX

e For continuous variables. it is
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3.2 Existence of expected values for discrete variables

The expectation of a random variable X is not always defined. For a discrete random variable

X taking on values in the set
{.1'1. T2, }
to have a defined expected value,

2

E(X) =) xiP(X =)

=1

we must check the condition that the series is absolutely convergent, that is

S |l P(X = ;) < o

i=1
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3.3 Example. Infinite expected value.

Example. Infinite expected value.

Let X be the random variable taking values 2, 22,23 ...

with probabilities
: |
' _— u)l — N N -)
P(X =2 = o for i=1,2,..

Then px is a valid probability function, because

0 Yo and Z[L\'(.l') —

IV

px(x)
On the other hand
VY oi r = 1 =
E(X) =3 ¥pX =r) =Y 25 =3 1=
1=1 = 1=1

so the expected value of X is infinite.
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3.4 Undefinite expected value

Let Y be a discrete random variable with probability function

[ L for y=2.4.816,...
py(y) =4 57 for y=—2,-4,-8,-16,.
|0 otherwise
So
py(2) = py(=2)=1/4
py(4) = py(—4)=1/8
py (8) = py(—8) =1/16
and so on.

X

py is indeed a valid probability function. But the expected value of Y does not exist
E(Y)=> wpy(y) =Y (2"

+Z )XZ" -
Y k=1
5 X
=3 /2~ Y/ =00 - x

=]

b
Il

—
o~
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3.5 Existence of expected values for continuous variables

Example. Expected value is infinite. Suppose we are given a continuous random variable
X with density

fr(a)) = 0 for z<1

m% for £ >1

First let us check whether it is a proper density. This is a well-defined density because

fx(z) > 0is piecewise continuous and

[t e[ =

However, the expectation of X is infinite:

/O:Oxfx(:c)da: = /100 id:t: 00
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3.6 Moments and central moments

The moments of a distribution form an important class of expectations.

e The n-th moment of X is defined as
my, = E(X") = Z " px ()
reX

for discrete variable, and

my, = E(X") = / " fx(x)dr

O
for continuous variables, where p y () is the probability mass function and fy () is
the probability density function.

The expected value is therefore the first moment of a distribution

Central moments are defined in a very similar way after substracting the first moment.
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3.7 Variance

Aside from the expected value (first moment) £'(.X' ), a very important feature of a probability
distribution is captured by the second central moment or variance

02 =Var(X) = E[(X - E(X))?]

For discrete random variables,

Var(X) = 3« — w)px ()

reX
and for continuous random variables

. )

Var(X) = / (z — p)* fx (z)dx

—C
where 1 = E(X)
Variance measures the degree of spread of a distribution, i.e., how widely all values are

distributed around the mean

Two density functions may have the same mean but different variances.
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3.8 Computation of the variance

A working expression for the variance is given by:

= E[(X - E(X))?’=E(X?*) -EX)*>0

The variance cannot be negative!

Example. A continuous random variable X' has probability density

20 for D<o <1
0 else

Ix(x)) =

Then
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3.9 The variance may be undefined

Let X' be a random variable with probability mass function

The expectation converges:

but

so the variance is not defined.
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3.10 SD and variation

The standard deviation o is the positive square root of the variance, that is

Var(X)

Note that
The measurement unit forthe standard deviation is the same as that for the original variable .X'
The measurement unit on the variance is the square of the original unit.

The ratio o /1 is called coefficient of variation and is the measure of dispersion of a
probability distribution

- It is useful when comparing the degree of variation from one data set to another even when
the means of the distributions are different

- It is often reported as a percentage
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3.11 Markov’s inequality

We may be interested to obtain an upper bound for the probability
P(X > x)

by using some well-known inequalities. Let X' be a non-negative continuous random variable

r

with finite expectation £'( X ).

The Markov’s inequality states that

F(X
P(X > a) < (X) Ya > ()

a

Proof. Consider a p.d.f. with fx (&) = 0 for r < (. Remember that

P(X Za)= / fx(x)de

then

E(X)= /)C rfx(x)dx > /x rfx(x)de > a /x fx(x)dr
J0) Ja

Hence the inequality

E(X)

(

[ " fx(@)de = P(X > a) <
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3.12 Chebyshev’s inequality

»

Assuming that X' has a finite expectation ;1 = (X ), Chebyshev’s inequality states that

P(|X — E(X)| > a) < _m§\)

a

e Thsi inequality allows us to estimate the likelihood of a deviation of a random variable .X
from its mean value even fif little information is available about the distribution of .X .

e |tis a simple application of Markov'’s inequality. Recall that

E(X)

(

P(X > a)< Va > 0

Substract the mean ;« = E(.X') and take the absolute value, then

E([X — ul?) N Var(X)

D
a= (I

P(|X - E(X)| 2 a) = P(|X - E(X)]" 2 a®) <
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3.13 Application of the Chebyshev

Let X' be a random variable with mean 15 and variance 9.
Compute:

(a) the maximum value for P(|.X — 15| > 10)

(b) the maximum value for P(X < 10U X > 20)

(c) the minimum value for P(|.X — 15| < 10)

These cases can be solved by applying Chebyshev'’s inequality:
< Var g )

a

P(|

X) > a)
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Some univariate discrete and continuous
distributions
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Permutations 3.16 Countingrules

Suppose we have a set S with n elements and we want to count the number of
permutations of length k < n obtained from S, that is the number of elements of
the set

{(s1,...,8k) : 8i € S,s; # s; when1 # j}
- We have n choices for the first elements s;
- n — 1 choices for the second element 32
- ..andfinallyn — (k — 1) = n — k + 1 choices for the last element s

Therefore there are
nn—=1)---(n—k+1)

permutations of length k from a set of n. elements, which can be written as

n!

(n —k)!
Notice that, when k = n there are
n'=nn-1)---2-1

permutations of length n
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Three genes have been previosuly classified as beloging to three different biological 3.17 Summary of
pathways. Suppose that the correct classification scheme is lost and a random countin gru les
classification is attempted. What is the probability that each of the three genes is

assigned to the correct class?

Here we have a set S = {1, 2,3}, and there are
N=3x2x1=6

permutations of its elements, that is
{1,2,3},{1,3,2},{2,1,3}
{2,3,1},{3.1,2},{3.2,1}

Only one of these assignments is correct, so the probability is 1/6

Summary of counting rules
- Very often we will need to count the number of ways of arranging T elements
from a larger set of n. elements.

- This count depends cn whether we need to keep the elements in order, and
whether we sample with or without replacement.

Here is a summary:

I With Replacement  Without Replacement

r n!

Ordered n Ga=r)l
Unordered i +:_ 1) i)
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A Bernoulli experiment or trial is an experiment having only two possible 3.18 Bernoulli distribution
outcomes, e.g. 0/1 or A/ B. Usually the outcomes represent success or failure of
an event.

Consider the random variable X defined as

X = { outcome is a success }

A random variable X is called Bernoulli if the probability mass function is given by
px(k) =P(X =klp) =p*(1 -p)' " k=0,1

where) < p <1

Or more simply, whenP(X = 1) = pandP(X =0)=1—p

- The cumulative distribution function is given by

0 z<0
Fx(z)=<1-p 0<z <1
1 z>1

- Expected value and variance are given by

1
E(X)=> zpx(x)=(0)(1-p)+(L)p=p
z=0

and
var(X) = E(X?) - [E(X)]* =p—p® = p(1 - p)
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- Consider a sequence of nn independent Bernoulli trials in each of which there 3.19 Binomial
are only two possible results: distribution

P(success) = p  P(failure) =1 —p

- We are interested in computing the probability that we observe r successes in
n trials

- For a given n, let X be the random variable defined as

X = { number of successes in n trials }

- The probability of observing one particular sequence with r successes and
n — 7 failures is given by

pr(l=p)" T

- The event { X = r} contains

() =mmn

such sequences. Therefore

A random variable with probability mass function

T p- LY
px(r) =P(X =r|n,p) = (r)p 1-p™" r=0,1,..,n

is called Binomial. It provides the p}obability of observing r successes in n (inde-
pendent) trials. It has two parameters and we refer to it as Bin(n, pL ol
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3.20 Binomial in R

bin=rbinom(2000,1000,0.9)
h=hist(bin,freq=F,col="red")
xx=seq(850,930,by=1)
plot(xx,dbinom(xx,1000,0.9),type="1")
points(h$mids,h$intensities,type="h",col="red")

Histogram of bin

0.03

binom(xx, 1000, 0.9)
0.02

8680 880 900 920
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It can be easily checked that the probability mass function given before indeed 3.21 Prob. density
defines a proper probability distribution.

- First, recall the binomial theorem: for any real numbers = and y and any
integer n. > 0,

3 (M)as™ " = @+ )"

r=0

- We can check that the Binomial p.m.f. p x (z) is indeed a genuine probability

function, that is
n n
Y px(@)=) P(X=r)=1
r=0

r=0

by taking z = pand y = 1 — p. Then apply the binomial theorem

Sex@ =3 (M) a-pr
r=0 r=0

={p+(Q-p)}" =1
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- Consider a collection X;, 1 = 1,...,n, of independent Bernoulli random 3.22 Moments

variables all having equal success probability p. That is, they are independent
and identically distributed.

- Recall that mean and variance of each X; are given by
E(Xi)=0p

and
Var(X;) = p(1 - p)

- Let us now define a random variable Y as

n
Y =) X;
i=1
then Y is distributed as a Binomial random variable with parameters 1. and p,
Y ~ Bin(n,p)

- Using the linearity property of the expectation operator, mean and variance of Y’
are then easily derived as

gly)- GX:Z; X, ) :';:Z;C:(X)):agfx"-):i
sl

U u
Vlr [‘7’): Var E;Y,') = z l/ar(X;) -« lé:/)f;):a,a{/f—/o )

A
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The number of random occurrences that may occur in a given unit of reference 3.23 Poisson
(such as time or space) can be modeled by the Poisson distribution. distribution

We assume that events occur in a given time period with an constant rate A > (.
We define a random variable X as

X = {number of occurrences in a given interval }

The probability mass function of a Poisson random variables is given by

e Ak
k!

px(z) =P(X = k|)\) = k=0,1,2,...

where A > ( is the intensity parameter. In short, Pois(\)

plot(0:10,dpois(0:10,0.7),type="1")

The mechanism that gives rise to this density involves the following assumptions:

Events are rare (the probability of an event in a unit of reference is small)

Events are independent

Events are equally likely to occur at any interval of the reference unit

The probability that events happen simultaneously is negligible (for all practical
purposes it is zero).

When the reference is time, this is considered another important waiting time
distribution. In genetics it arises in many situations,

- Model the distribution of mutations

- Model the distribution of recombination rates
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Moments of the Poisson distribution

- As usual, we may want to check that

o0

Y P(X=0)=1

=0

- Recalling the Taylor series expansion

1=0
it follows that
o0
/\2 ,\3
> PN =) =) (1+,\+—+—+...)
2! 3!
2=0
o0 z
v=p0 Z*
=e" e =1

- Mean and variance of a Poisson random variable are
E(X)=Var(X)= A\

so this may not be a suitable model when we expect sample mean and variance
to be different.

3.24 Moments

Monday, 18 November 13




The Poisson distribution can be used as a good approximation to the binomial 3.25 Poisson vs Binomial
distribution, i.e.

e
e A -

= ~ (n)p"(l —~p)*® k=0,1,...,n

k
when
- the number of trials . is very large, so (};) is hard to compute

- the probability of success p is very small, so that np = A is fixed

Therefore the Poisson approximation is valid exactly when it is most uselul, freeing
us from calculation of binomial coefficients and powers for large n.

Example 5.8. Poisson vs binomial

Probability mass functions of a Binomial(100, 1/10) (triangles) and a
Poisson( 10) (circles) evaluated at points 0, 1,...,20

> Eistbackboc k{rpois{10000,10), rbinom(10000,100,0.1),probability=T,brks=seq{(0,24,by=1))

3

= J

& A

2 -

= L

o - [

- [ 1
A [

@ [

t

- J

"~ | SN

% T r

= . -

018 010 005 000 005 0.10 015

rpois 10000, 10) inom( 10000, 100, 0.1)
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So far we have assumed a fixed number of trials . Now suppose n is not known a 3.26 Geometric
priori: we continue to run the experiment until the first success is observed. Again distribution

we assume that at each trial a success occurs independently with fixed probability p

and a failure with probability 1 — p.

Therefore now we are interested in studying a random variable X defined as

X = {number of trials untill the first success }
The probability mass function of X is given by
px(z)=P(X=zlp)=1-p% 'p z2=12,...

which defines the geometric distribution or Geom(p).

- This is the simplest of many waiting time distributions for discrele variables.

- In order to prove that px () is a proper p.m.f., recall that for any number r with
|7| < 1 we have

2" = T

n=0

Then it is easily checked that

ZPX(-'D) - Z(l—p)z_lp =pZ(1_p)1 =p 1 A
= = = - (1-7)
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We review the most common and most important continuous univariate random
variables. They will be encountered numerous times later and form the basis of a
large part of statistical inference

When encountering a new distribution it is valuable to know particular characteristics
of importance such as

- Its theoretical importance. For instance, the normal distribution arises in a
plethora of applications because of its association with the so-called central limit
theorem, discussed later

- Its use in applications Many distributions are often associated with a specific
application, but are in fact used in many other contexts as well.
- How its functional form came about. For instance it could be

~ be a base distribution arising from mathematical simplicity (e.g. uniform and
exponential)

- be strongly associated with a particular application (e.g. /' distribution in the
analysis of variance, discussed later)

- be a generalization of a simpler distribution (e.g. the Gamma generalizes the
the Exponential)

3.27
Continuous
distributions
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3.28 Uniform distribution

Uniform distribution

The uniform is arguably the simplest continuous distribution and is used for modeling
situations in which events of equal length in (a, b) are equally likely to occur.

The uniform distribution assigns equal probabilities to all outcomes in the interval
[a, b] C R. It has probability density function

. 1 ‘:
f e lplabyed 5a e S bl
| 0 elsewhere

We write that X is Uniform(a, b).
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3.29 Indicator function

- Alternatively, using the indicator function, we could write

fx(@) = 7= Tja (@)

where

1 ifz € |a,bd]
I[a.b] (z) =

0 otherwise

- The cumulative distribution function is

0 X<a
Fx(z)=P(X <zla,b) =472 a<z<b
\1 >b

- The uniform with @ = 0 and b = 1 is called the standard uniform

distribution
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140) Fyto 3.30 Moments of
uniform distribution

@) )

- The expected value is

E(X)=/o° 2fx(z) = - /abxd:c

—00 b—a
1 ¥ —-a%2 1
b—a 2 2( @)
- Having obtained
1 b —ad
E(X?) =
(X%) b—a 3

the variance is given by
Var(X) = E(X2) — E(X)? = 1—12(b — a)?

- An important special case is the standard uniform. If X' ~ Uniform(0, 1), then

fx(z) =Ijp,1)(x)
and

Fx(z) =P(X < z) =z I (z) O
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On the left, X ~ Uniform(13, 15). On the right, Y ~ Uniform(0, 1). 3.32 Examples

Shown are the cumulative distribution function (top) and density function (bottom).

[r—— P —————————
B 9.
3 3
3 3 3
-~
- -
o v
3 3
- -
g T T o o T ° . —— 12
"o AR} "o “s L oo 02 04 os o 10

2
2

Lin)

80 92 04 06 00 W
4 M 2 2

00 02 04 05 O3

3o ns "o s 150 (24 02 LX) oe os o

For instance,
1
E(X) = 5(a+) = %(13+ 15) = 14
and 1 i 1
() s a) e
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3.32 Exponential distribution
It X is an exponential random variable, then its density function is given by

e~ 2% >0

fx (z|A) = |
0 elsewhere

for A > 0. Write X ~ Exp(]).

- The exponential distribution may be seen as the continuous counterpart of
the geometric distribution: it is used to model the time between independent
events happening at a constant average rate

. There are numerous applications of this distribution. Under the assumption of
constant rate A, it can be used to model
- the time until a radioactive particle decays
- the time until the next customer enters a queue

- the time until the next recombination event
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= X=5eq(0.1,30,by=0.5)

= plot(x,dexp(x, rate=0.2), type="1",col="red")
= points{x, dexp(x, rate=1), type="1",col="blue")
= plot(x, pexp(x, rate=0.2), type="1",col="red")
> points(x, pexp(x, rate=1), type="1",col="blue")

02)

rate =

3.33 Examplesin R
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There is a very close tie between the Poisson distribution and the exponential

distribution

- Let X be a Poisson random variable counting the number of occurrences in the
interval [0, t]

- Our interest is in the time between two arrivals, which obviously is also a
random variable

- Let the arrival time be denoted by T". Its probability distribution function by
definition is
- .

P(T<t)y=1-pP(T>t) t>0
elsewhere

Fp(t) =

- In for‘vs’b()(. the event 7° > t is equivalent to the event that there are no
arrivals during the time interval [0, t), which means X = 0.

- Hence, since
P(X =0)=e M

we have

. l—e ? t>0
T(t) =
otherwise

3.34 Link between
Poisson and exponential
distribution

- Hence the interarrival times between Poisson events has an exponential
distribution,

- The parameter A in the distbution of 7" is the mean arrival rate associated with
Poisson arrivals
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The probability density function of the normal distribution
, VRSN CLI)
T\p, o) = e ' 2 on (—o00,00

which depends on a location parameter (mean) u and scale parameter (standard
deviation) o. The distribution will be denoted by N(x, o2)

see? 0,08

19
N TS— -

W)

- Some basic facts:
- The density is a symmetric, bell-shaped curve with points of inflection at
p—o,p+o
~ The factor 1 /v/27o is the normalizing constant
- The mean y corresponds to the maximum value, (1/v/270)

- The mean is also the median (i.e. the point z such that Fx (z) = 1/2s
(1) and the mode (the peak of the density)

3.35 Normal
distribution
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Cumulative distribution function

The cumulative distribution function of X is

O
Fx(z) = / e 204 dv
-0

2ro

T

L8]

o

Fule)

Problem: the integral above cannot be evaluated in a closed form and must be
computed numerically. These calculations have been done and collected in tables
for a standard normal distributiuon

3.36 Cumulutative
function
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The standard normal distribution

it X ~ N(u,o?) and we take the transformation

then Z ~ N (0, 1), a normal distribution with z = 0 and o = 1. The distribution
function of the standadized random variable Z is

Fz(z)=P(Z<L2z)= 71_— : e"%;dv = ¢(2)

2m -0

Note that ®(z) denotes the distribution function of a standard normal distribution.

How do we compute probabilities for any normal distribution?

Suppose we have a normally distributed random variable X ~ N( 1L, 0'2). How do
we solve probabilities queries about X ?

(a) Re-write the problem in terms of Z = x—;ﬁ sothat Z ~ N(0,1)

(b) Use the tabulated values of $(2) = P(Z < 2)

3.37 Standard
distribution
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Example 6.4. Mass spectra
- The peak intensity of a mass sprectrum is modeled as a normally distributed
random variable X, say N(2, 9) (in cm.).
- What is the probability of observing a peak between 1 and 4 cm.?

- First, let us rewrite the general problem in terms of Z, the standard normal

P(agxgb)=9(a_”<x—“<b—“)

o . oY T

___P(a-—;LSZSb—p)

o o

where Z ~ N(0,1), for which we know P (z) from the tables.

- In our example, A- L . = ‘_‘;2)
— ? [ et 3

¢ Xl
i = el £§)- ?22-4)
= ¢l5)- [1-4 (3]

R 036t~ (A-0.025)) 703+

3.38 Example
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Note that 3.39 Computing

P(u—z0 < X <p+20)=pP(-2< Z<2)=8(z)— d(—2) probabilities under

the normal curve
is independent on yz and ¢ and it is only a functic Z ;. The probability that X takes

values withinZ; standard deviations about its expected value depends only on 2.

For instance, illustrated here are the probabilities that X is within p + o
(a),r % 20 (b) and p = 30 (c)
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Sampling distributions

and
main large scale sample theorems
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In many statistical applications we will be confronted with the following:

- Suppose that X1, X2,...,Xn is a sequence of n inpedendent and
identically distributed random variables. Thatis, X1, X2,..., X, isa
sample from some distribution, .. X; ~ fx (z) where fx (x) can be either
a mass function or a density function

- We want to find the distribution of a new random variable
Y =h(X1; Xa;5;Xn)

for some function h, and for some 7. For instance, we may need the distribution
function of Y or just some moments of this distribution, such as mean and

variance.

- The distribution of Y is called the sampling distribution because Y is derived
as a transformation of a sample coming from some underlying distribution

4.2
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4.3

Some of the methods we have studied so far could be used for solving this problem
in situations when it is possible to compute an exact solution. In this chapter we
also consider some known results when fx () is the density of a normally
distributed random variable, and for various functions h.

When an exact solution is not available we have two options:

(a) Since Y is defined for each sample size 1, we can consider a sequence of
random variables Y7, Y2, . .., and therefore study the limiting distribution of
such a sequence so that, when n is large, we can approximate the distribution
of Yy, by the limit

(b) When n is small or the problem is particularly difficult, we can set up Monte
Carlo simulations
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4.4

- In statistical applications, we typically do not know much about the underlying
distribution of the X; from which we are sampling — these are observed data

- We then collect a sample =1, . . . , Tn,, from which we calculate a value of
y = h(z1,...,xn), and use y to estimate a characteristic of the (generally
unknown) underlying distribution of X (often we assume that the underlying
distribution of the data is normal)

- For instance, we may collect a sample to estimate the mean or variance of the
underlying distribution — these are functions of the observed random samples.

- Then we want to know what happens to these estimates when 7 (the sample
size) grows.

- If we have chosen our estimator well, then the estimates will converge to the
quantities we are estimating as n increases — how do we define convergence?

- When this happens, the estimate is called consistent
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Suppose we obtain a sample X1, X2 of sample size n = 2 from the discrete 4.5
distribution with probability mass function given by

1/2 =
1/4 xz =
Px () = ﬁ 1/4 z=J3
kolherwise

1
What is the distribution of Y2 = (X3 X2) 2 (the geometric mean)? Since n = 2,
the sampling distribution of Y2 is easily found by inspecting the following table.

Y aupt %0y

44 _ A

S =5

iz Z(A‘Oou'l"\i 4 A . ;"A A
Z.‘f <2 =

i’ g(AJ),(J,A)S A 4 W E L

R L.Z. ('4.4 -4

f‘u'—} A 2 ¥

q.

o~
~4

-

LW
23
598
= A
"' N x
A
\n
Shot
-~

If n = 20, what is the distribution of Yoo = 20
There are now 320 = 3, 486, 784, 401 possible samples.

Computing py,,, directly would be hard, even with a computer.
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Example 8.2. Geometric mean example continued

Two options are:

4.6

1
(a) Look at the distribution of Yy, = (X3 X2 -+ - X, ) » when n is large.

For instance, the Central Limit Theorem (CLT) will show that

1 n
hY,; = ;Zlnx,-

i=1

is well approximated by a normal distribution when 7 is large

(the In transform is 1-1 and is used to avoid potentially large values here)

(b) Set up a Monte Carlo simulation

02

c3

Monte Carlo va CLY Approximation
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4.7 Convergence
Notions of convergence are fundamentals in mathematics. However, if the values in probability

taken by a variable are random, then how can they converge to anything?

- We will consider the probabilities associated to the random variables, and check
whether they converge, in some sense.

- Let X1, X2,...bean infinite sequence of random variables and let Y be
another random variable

A sequence { X } is said to converge in probability to Y if, for every ¢ > 0,
lim P(| Xn=Y [>€) =0

n—00
o'r,_. equivalently, . »
lim P(] Xn—-Y |<¢) =1

L—00

Convergence in probability is often denoted by adding the letter P over an arrow

SRas : !
indicating convergence, i.e. X, — Y
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4.8 Convergence

in probability
Example 8.3. (Degenerate distributions) Suppose that
1 |
P(Xn,=1——)=1 and PiY =1)=1
n
then A
1
P(|Xn —Y| <€) = § whenevern > -
€
Hence /A
P(|Xn —Y| <€) — Basn — coforalle > 0
o
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One of the most important applications of the convergence in probability is the weak 4.9 Weak law of
law of large numbers. large numbers

- We are given a sequence X1, X2, ... of independent random variables each
one having the same mean, [2(.X;) = u, and finite variance less than or
equal v

- For large n, define the sample average
1
A’In = ;(Xl + ... + Xﬂ)

- The weak low of large numbers provides a precise sense in which sample
average values of My, get closer to ju for large 1t

Suppose we have the sequence X, X2,... ol independent variables with
E(X;) = pand variance v < co. Forany ¢ > ()

lim P(| M~ p|> ) =0

In other words, for € an arbitrary positive quantity, the weak law of large numbers
states that the probability that

[Mp — pu| <0
approaches 1 for a sufficiently large n, i.e. My, £ n

The law of large numbers is a fundamental notion that describes how likely the
average of a randomly selected sample from a population is to be close to the
average of the whole population .
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We are assuming that X1, X7, ... are independent, each one having same mean 4.10 Proof
{4, and each one having variance less than or equal v < ©0. Remember that the
sample average is,

M, = %(Xl + ... + Xn)
Using the linearity of the expected value, we see that
E(Mn) = %E(Xl + X4 oat Xn)= %(nu) =
Using independence, we have

Var(Mp)

_1_115 (Var(X1) + ...+ Var(Xn))

1
S —2('U+U+...+'U)
TL
1 v
= — V) = =—
— ()

Applying Chebychev's inequality

Var(Mp) <V
€ =

P(|Mn o2 /“‘I Z 6) S 2
€E“Nn

and note that this converges to () as n. — oc.
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4.11 Normal distribution

Let X1, X2, ... beiid. with distribution N(3, 5). Then

n

E(M,) = ;-11 Y E(X:) =3

=1

and by the wezk law of the large numbers,
P(|IMn — 3| <€) —1
as n — 00, or alternatively
PB—e< Mp<3+¢€)—1

Therefore, for large n, the average value My, will be very close to the known mean
3 with certainty.
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Consider flipping a sequence of identical fair coins, where X; = 0 (tail) and 4.12 Fair coin
X;i = 1 (head)

Let M, be the fraction of the first n coins that are heads.

Mp = (X1 + Xo+ -+ Xn)/n

Hence by the weak law of lage numbers we have

lim P(M, < 0.49)

n—+00

= lim P(Mpn — 0.5 < —0.01)
n-—-00

< lim P(My — 0.5 < —0.01 0r My, — 0.5 > —0.01)
n-—+00

= lim P(|Mn — 0.5 > 0.01) =0
n-—o0

And similarly

lim P(My, > 0.51) =0

n—*00

Then, for large n, it is very luckely that M, is very close to 0.5
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4.13 Almost sure

A notion of { random vari hat i imilar to the notion
ion of convergence of rando ables that is very similar to the of convergence

convergence of a sequence of real numbers if provided by the concept of almost
sure convergence or convergence with probability 1

Let X1, X2,..., be an infinite sequence of random variables. The sequence
{ X} is said to converge almost surely (or with probability 1) to a random vari-
able Y if,

p(lim Xp=Y)=1

n—oo

and we write Xn, =Y

- It is similar to point-wise convergence of a sequence of functions, but
convergence need not occur on a set of events with probability 0, hence its
name almost sure

- Alternatively, we say that X,, converges to Y almost everywhere or strongly
towards Y - these are all identical definitions.

- It is a stronger type convergence than the convergence in probability: if
{Xi} — Y almost surely, then { X;} — Y in probability. The converse is
not true.
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Let U ~ Uniform[0, 1]. As in the previous example, define X, by 4.14 Example

2 1
i ", R B =
8 otherwise
and define Y by
2
y={3Uss
8 otherwise
Note that

-WU > 2/3thenY = 8andalso X,, = 8foralln, soclearly X,, — Y

-WU < 2/3thenY = 3 and for large encugh 1 we will also have
2 1

UK€ =-
3 n

soagain X, — Y.

- KU = 2/3 then we will always have X, = & eventhough Y = 3

Hence, X,, — Y exept when U = 2/3. Because
P(U = 2/3) =0

we have that X, — Y with probability 1.
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We can now state a stronger result than the weak law of large numbers. It is 4.15 Stron g law of
stronger because it concludes almost surely convergence instead of just la rge num bers
convergence in probability.

Let X1, X2,... be a sequence of i.i.d. random variables, each one having finite
mean /. Then

00
That is, the average converges with probability 1 to the common mean s, or

Mn a;.z. L

- This large sample result says that sample averages converge with probability 1
to the common mean 1

- Analogously to the previous result, it says that for large n the averages M, are
arbitrarily close to . = E(X;)

- In addition, it says that if . is large enough, then the averages will all be close to
4, for all sufficienylu large n

- In a statistical sense, the sample mean is consistent for the mean /. (more on
this later).
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There is another notion of convergence of a sequence of random variables that is
important in applications of probability and statistics.

A sequence of random variables X, X2, ..., X, converges in distribution to a
random variable X if, for all z € R such that
PX=z)=0

we have
lim P(Xp <) =P(X < z) = Fx()
—*00

and we write X, = X

- Intuitively, { X, } converges in distribution to X if, for large 7, the distribution of
X, is close to that of X

- The importance of this result is that it allows us to work with the distribution of
X, which may be much easier to work with than the distribution of X,,. We can
approximate the distribution of X, by that of X

- On the other hand, the fact that X,, converges in distribution to X says nothing
about the underlying relationship between X, and X, it only says something
about their distribution.

- Note that convergence in probabil'ity implies convergence in distribution, but the
converse is not always true

4.16 Convergence
in distribution
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Central Limit Theorem 4.17 CLT

The Central Limit Theorem (CLT) is one of the most important results in probability
theory. Intuitively, it says that a large sum of i.i.d. random variables, properly
normalized, will always have approximately a normal distribution.

Suppose we are given a collection X1, X2,... of i..d. random variables each
having finite mean j. and variance o2. Let

Sn = X1+ ...+ Xn
be the sample sum, and
Mn - Sn /n
" the sample mean. Let the standardized sample mean be
Sn —nu 7 Mn - U
Vno c/vn

The CLT states that, as n — 00, the sequence {Z,, } converges in distribution to
Zie. Zn = Z N(0,1)

Zn'——-'

- Note that the result holds regardless of the form of the distribution of the
individuals X ;—the only requirement is that each X; has finite mean and
variance.
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In this example, X1, X2,..., X, arei.i.d. from a uniform distribution. We look at
the distribution of Z,, as n increases.

4.18 An illustration
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4.29 Three first examples

runif2x<- (n, minl, maxl, min2, max2) replicate(n,
ifelse(runif(1)>0.5, runif(l,minl,maxl),
runif(l,min2,max2)))

x1 <- runif2x(1000,0,1,2,3) (1 1:100) {x1 <- x1 +
runif2x(1000,0,1,2,3)}

hist(x1)

OR

x1=c(runif(1000,0,1),runif(1000,2,3))

hist(x1,breaks=100,col="red")

x2=0

for(i in 1:1000){x2[i]=mean(sample(x1, 1000, replace = TRUE, prob = NULL))}
hist(x2,breaks=100,col="red')

Not completely correct. Why?

OR

x1 <- sample(c(runif(1000,0,1),runif(1000,2,3)))

for (i in 1:10) {x1 <- x1 + sample(c(runif(1000,0,1),runif(1000,2,3)))}
hist(x1,col="red",breaks=20)
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4.19 Another

In this example, X1, X2,..., Xy areii.d. from a bimodal distribution. illustration
n=1 LEE
2 o
s o
g o .. .Ao‘ g ©
S Fi e S
o x 2 i —d
o r 1 - o
-2 -1 0 1 2
.
ne3l

Deraty
02
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Alternative ways to express the CLT 47

The CLT ican be restated in alternative ways. For each fixed z € R, then
(@) limp—oo P(Zn < x) = ®(x)

(b) limyp oo P(Sn < nu + zy/no) = ¢(x)

(©) limp oo P(Mp < pu+ zo/n) = ®(z)

where ®(z) is the cumulative distribution function for the standard normal
distribution.

Suppose X1, X2, . .. are i.i.d. random variables each with the Poisson(5)
distribution. Recall that this implies

p=EgeX;)=5 o°=var(X;)=5
Hence, for a fixed x, we have

P(Sp <5n+ zvdn) — ®(z) asn— o0

AR A AN A e
A

L L L
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Suppose X1, X2, ... areiid. random variables each with a Bernoulli(#) 4.21 Normal

distribution . .
approximation to

Recall that this implies E(X;) = 6 and v = Var( X;) = 6(1 — 0) the Binomial

Hence, for each fixed x,
P(Sn < nb + z/nB(1 — 0)) — ®(z) asn — oo
We also know that
Yn=5Sn=X14+ X2+4+...4+ Xn ~ Binomial(n,0)

So the previous statement implies that

— Yn — né y —nb e y — né
PS8} _P(ﬁ(ﬁbj = /o0 —a)) ~¢(,/o('1 -a))

for large n.

Note how, again, we are approximating a discrete distribution by a continuous
distribution. A small improvement is often made to the previous approximation when
y is a non-negative integer. We use

P(Yn <y)x & (y_—ti)_5_-—_no)

Vo(l - 6)

Adding (0.5 to y is called the correction for continuity. In effect, this allocates all
the relevant normal probability in the interval

(y = 0.5,y +0.5)

to the non-negative integer y, which generally improves the approximation.

Monday, 18 November 13




4.22 Sum of normals

Normal distribution theory

Suppose that X1 ~ N(u1,0%7) and X2 ~ N(u2,03), and are independent.
Two important poperties of the normal distribution are
eX1 +d ~ N(cpy + d, ?o?)
X1+ Xo ~ N(;,Ll +- 11,2,0’% -+ 0’%)

Combining these results, we can
see that linear combinations of independent normal random variables are also normal

Suppose X; ~ N(p;, aiz ) fori = 1,...,n and that they are independent ran-
dom variables. Let

Y = () aiXi)+b

for some constants {a; } and b. Then

Y ~ N ((Z a;ifi) + b, Za?a?)
1 i
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4.23 Sampling mean

Sampling distribution of the sample mean

The result above immediately implies that
Suppose X; ~ N(p4, 0'2) fori = 1,...,n and that they are independent ran-
dom variables. If

X=(X1+X2+...4+ Xn)/n

then
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Another property of linear combination of normal random variables 4.24

Two linear combinations of the same collection of independent normal random
variables are independent if and only if they covariance equals ()

Suppose X; ~ N(pi.df) fori = 1,...,n and that they are independent ran-

dom variables. Let
Lfie= Z a; X;
i

V= Zb.-x,-
i

for some constants {a; } and {b; }. Then

and

Cov(U,V) =Y ashio?
1

Furthermore, Cov(U/, V') = Qif and only if U and V' are independent.

Note how, for normal distributions, it Cov(UJ, V') = 0 then U and V are
independent. It is important to remember that that this is not generally true for all
random variables.

Cov(X.Y) = E[(X — E[X])(Y - E[Y])]
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The x? distribution with n. degrees of freedom or x?, is the distribution of the ran- 4.25 Chi-squared

dom variable distribution revisited
Z=X24+X3+ .. 4+X2

where X1, ..., Xn are ii.d., each with standard normal distribution N(0, 1)

Ixin

o.lT

06| n=1

04

02}

1] AN -
0 2

Observe that the x? distributions are asymmetric and skewed to the right. As the
degrees of freedom increase, the central mass of probability moves to the right.

As another special case, note that n = 2 given an Exp(2) distribution

Monday, 18 November 13




Another special case of the gamma distribution is given by the x2 distribution,
which is very important in statistical inference and hypothesis testing.

The density function of a random variable X with chi-squared distribution is

1 (n/2)~1_—=z/2 >
fx(z) = g"?’r‘wz)”c o e )

elsewhere

which is obtained as special case of the gammawith A = 1/2andn = n/2

- The n parameter is usually referred to as the degrees of freedom

- The utility of this distribution arises from the fact that a sum of the squares of ni
independent standardized normal random variables has a x2 distribution with n
degrees of freedom.

- The density of a x? distribution forn = 1, 2,4, 6

1%

)

06+ na

-x

3.40 Chi-squared
distribution
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The expected value of this distribution can be easily computed

W Z ~ x2 thenE(Z) =n

To see this result

- Write
Z=X3+---+X2

where { X; } areiid. N(O, 1).
- Then E((X;)?) = 1.
- The result follows by linearity.

The following result is important in statistical inference

Let X1,. .., Xn beiid. N(jz,02), and put

R | ¥
X==(Xi+4--+Xn) 8?=— > "(Xi-X)?
» n_li——-l

then

and furthermore S? and X are independent.

(=22 -y

E(S?) = o?

It follows that

and therefore

4.26 Sampling
distribution of the
sampling variance
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4.27 T distribution

The t distribution with 2 degrees of freedom or t,, arises as the distribution of a
standard normal divided by the square-root of 1 /7 times an independent
chi-squared random variable with n. degrees of freedom

The t distribution with n degrees of freedom or t,, is the distribution of the random
variable
X
\/(xf + X2 +...4 X2)/n

where X, X1, ..., Xy, arei.i.d. with standard normal distribution. Equivalently,

Z=X/\JY/n

v, d—

‘where Y ~ x2
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4.28 F distribution

The F distribution with m and n degrees of freedom arises as the distribution of
m/n times a chi-squared distribution with m degrees of freedom divided by an
independent chi-squared distribution with 7 degrees of freedom.

The F distribution with 7 and n degrees of freedom or F, , is the distibution of
the random variable

2 a (Xf+X§+...+X%)/m
(Y2 +Y2+...4+Y2)/n

where X1,..., X, Y1,...,Yn are i.i.d. each with the standard normal distri-
bution. Equivalently,

7= X/m
Y/n
wherevax?nandYNx?,
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